SI.L1-3.14.4 – UPDATE MALICIOUS CODE PROTECTION

DISCUSSION [NIST SP 800-171 R2]

Malicious code protection mechanisms include anti-virus signature definitions and reputation-based technologies. A variety of technologies and methods exist to limit or eliminate the effects of malicious code. Pervasive configuration management and comprehensive software integrity controls may be effective in preventing execution of unauthorized code. In addition to commercial off-the-shelf software, malicious code may also be present in custom-built software. This could include logic bombs, back doors, and other types of cyber-attacks that could affect organizational missions/business functions. Traditional malicious code protection mechanisms cannot always detect such code. In these situations, organizations rely instead on other safeguards including secure coding practices, configuration management and control, trusted procurement processes, and monitoring practices to help ensure that software does not perform functions other.

FURTHER DISCUSSION

Malware changes on an hourly or daily basis, and it is important to update detection and protection mechanisms frequently to maintain the effectiveness of the protection.

Example

You have installed anti-malware software to protect a computer from malicious code. Knowing that malware evolves rapidly, you configure the software to automatically check for malware definition updates every day and update as needed [a].

Potential Considerations

Is there a defined frequency by which malicious code protection mechanisms must be updated (e.g., frequency of automatic updates or manual processes) [a]?

Copyright

Copyright 2020, 2021 Carnegie Mellon University and The Johns Hopkins University Applied Physics Laboratory LLC.

Copyright 2021 Futures, Inc.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center, and under Contract No. HQ0034-13-D-0003 and Contract No. N00024-13-D-6400 with the Johns Hopkins University Applied Physics Laboratory LLC, a University Affiliated Research Center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY AND THE JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY LLC MAKE NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL NOR ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.